
Is Host-Based Anomaly Detection + Temporal

Correlation = Worm Causality?

Vyas Sekar, Yinglian Xie, Michael K. Reiter, Hui Zhang

March 6, 2007

CMU-CS-07-112

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

This research was supported in part by National Science Foundation grant number CNS-0433540 and ANI-

0331653 and U.S. Army Research Office contract number DAAD19-02-1-0389. The views and conclusions contained

here are those of the authors and should not be interpreted as necessarily representing the official policies or endorse-

ments, either express or implied, of NSF, ARO, Carnegie Mellon University, or the U.S. Government or any of its

agencies.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
06 MAR 2007 2. REPORT TYPE

3. DATES COVERED
 00-00-2007 to 00-00-2007

4. TITLE AND SUBTITLE
Is Host-Based Anomaly Detection + Temporal Correlation = Worm
Causality?

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University ,School of Computer
Science,Pittsburgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

30

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Keywords: Worm, Attack Causality, Epidemic Attacks, Forensics

Abstract

Epidemic-spreading attacks (e.g., worm and botnet propagation) have a natural notion of attack

causality – a single network flow causes a victim host to get infected and subsequently spread the

attack. This paper is motivated by a simple question regarding the diagnosis of such attacks – is it

possible to establish attack-causality through network-level monitoring, without relying on signa-

tures and attack-specific properties? Using the observation that communication patterns of normal

hosts are sparse, we posit the hypothesis that it is feasible to uncover attack causality through a

combination of host-based anomaly detection and temporal correlation of network events. The

contribution of this paper is a systematic exploration of this hypothesis over the spectrum of attack

properties and system design options. Our analysis, trace-driven experiments, and real prototype

based study suggest that it is feasible to establish attack causality accurately using anomaly detec-

tion and temporal event correlation in enterprise network environments with tens of thousands of

hosts.

1 Introduction

Epidemic-spreading attacks (such as worm and botnet propagation) present a significant threat to

the security of networks. Understanding and defending against such self-propagating attacks in

an automated fashion is a challenging task. For each host infected by these attacks, the notion of

attack causality1 arises naturally. There is a single traffic event that causes this host to become

compromised and spread the attack further. In this paper, we seek to understand if it is feasible

to establish attack causality, i.e., provide the ability to pinpoint the causal flow which caused

a vulnerable host to get infected. As attacks become increasingly sophisticated (e.g., changing

payloads to evade signature-based detection, varying port numbers to evade firewall rules), we

are particularly interested in techniques that do not depend on attack-specific properties such as

signatures, and do not require prior in-depth understanding of attacks (e.g., the scanning strategies

and scanning rates).

Our work goes beyond traditional attack detection in that we strive to provide capabilities that

can establish the causal chain of events to describe how an attack unfolded across the network. This

has tremendous value for attack forensics [25, 8, 14] and for guiding attack-signature generation

(e.g., [6]). However, current approaches for establishing attack causality require fine-grained host-

level analysis (e.g., [12, 21]) and often require updating each end-host in a network with new soft-

ware capabilities. We explore the viability of an alternative lightweight network-based approach

for establishing attack causality, which does not require fine-grained packet payload analysis, and

can be implemented without modifying end-hosts.

To make our problem more concrete, we focus on enterprise environments where administra-

tors can audit traffic events such as flow or packet headers for every end-host within their network.

Even in this context, establishing causality in an attack-agnostic fashion is challenging, since the

problem of inferring the intent of a particular traffic event without understanding the contents,

application handlers, and end-host configurations appears intractable.

However, there are properties of real-world traffic patterns that can help in establishing attack

causality using network-level monitoring alone. The communication patterns of individual hosts

tends to be sparse – normal (i.e., non-infected) hosts tend to communicate only with a small set of

hosts in the network on a regular basis, and the set of hosts contacted does not grow rapidly with

time. This suggests that detecting infected hosts using coarse-grained anomaly detection metrics

(such as the number of distinct destinations contacted) and without relying on attack-specific prop-

erties is feasible. Also, a majority of enterprise network traffic and a significant portion of Internet

traffic is based on a client-server model. Thus the number of incoming connections to a client

host is small. This implies that once we identify an infected host there are only a small number

of incoming connections that serve as candidate flows for examining attack causality. Based on

these observations, we hypothesize that it is feasible to establish worm causality, by combining

host-based 2 anomaly detection with temporal correlation across infection events.

1The notion of attack causality is different from the notion of causality used in distributed systems [9]. We are

interested in the exact flow that caused the host to be infected, and not on the temporal ordering among network

events.
2This is referred to as a host-based detection system only for the reason that we want to detect anomalies for each

host in the network. The detection only depends on observing coarse-grained network behavior of each host, and need

1

We present a systematic exploration of this hypothesis. First, we outline the design-space of the

host-based anomaly detection and temporal-correlation in Section 5. Second, we use a three-fold

evaluation methodology: (1) We use an analytical study with a simplified network traffic model

(Section 4). This sheds light on the intuition behind the hypothesis and the factors affecting per-

formance. (2) We present trace-driven evaluations (Section 6) using traces from a large university

network (with over 16000 active hosts) where we vary both the spectrum of attack properties and

the space of design options. Our evaluation shows that for common attack models that we observe

today, we can establish attack causality with more than 95% accuracy, using network-level mon-

itoring alone. We find most sources of inaccuracy arise from background scanning activity and

server-driven behavior, which are easy to automatically cull out. For stealthy attacks that mimic

normal traffic patterns or employ an incubation strategy, the approach is still promising but may

require additional information regarding attack parameters or knowledge of the background traffic.

We suggest novel mechanisms to automatically infer these features (Section 5.3 and 5.4), which

are also easy to implement in practice. (3) We implement a prototype system and test it using a 25-

day long trace from the same large university network (Section 7), and observe that the overhead

of such a system is low even for large enterprise networks with tens of thousands of hosts.

These results provide the basis for a practical scheme for establishing attack causality, us-

ing only coarse-grained network-level monitoring, without relying on prior knowledge of attack-

specific properties. This has positive implications for attack-defense, and such an approach will be

immediately applicable in enterprise settings, with potential extensions for wide-area networks.

2 Related Work

Detection and correlation are recurrent themes in the intrusion detection and anomaly detection

literature. Numerous research efforts focus on designing effective methods for detecting worm

outbreaks and infected hosts (e.g., [24, 16, 22]). While these solutions do not address the notion of

attack causality they provide anomaly detection capabilities which can be used in our framework.

Recent work [7] utilizes both the temporal and spatial correlation of events for attack detection.

We present the hypothesis that by combining detection and temporal correlation it is feasible to

establish attack causality.

Establishing causality among traffic events has been previously studied in the context of stepping-

stone detection (e.g., [19, 27]). These techniques analyze similarity of traffic content across flows,

or perform fine-grained inter-packet timing analysis to establish causality between traffic flows.

Our approach does not require such fine-grained analysis, but instead depends on only coarse-

grained detection and flow-level analysis. Recent work by Kannan et al. [5] attempts to uncover

hidden causality among traffic events using statistical properties of traffic arrivals. Our work dif-

fers from their approach in two aspects. First, we focus specifically on epidemic-spreading attacks

(e.g., worm and botnet propagation) where there is often a discernible change in the behavior of

an infected host. Second, their approach shares some similarity with the stepping-stone detection

literature in that they depend on assumptions regarding statistical properties of packet inter-arrival

not be co-located with each host. In the remainder of the paper we use the term host-based anomaly detection with the

understanding that the detection system monitors the network activity of each host in the network.

2

times. Attacks which vary the incubation time of an infected host and delay the onset of attack

activity can evade such techniques which depend on the statistical properties of attack traffic to

be substantially different from normal traffic patterns. By leveraging the fundamental sparsity of

inter-host communication patterns, our approach is robust across a wide spectrum of worm attacks.

The notion of correlating incoming and outgoing connections at anomalous hosts is a common

theme between our work and some worm detection techniques (e.g., [1, 20, 4]). There are two key

differences between these approaches and our design. First, these approaches focus on detection,

whereas our focus is on establishing attack causality. Second, these approaches often rely on pre-

defined attack-specific rules (e.g., attack signatures, port numbers). Our focus is on investigating

the potential of utilizing host-based anomaly information with flow-level correlation constituting a

more attack-agnostic approach.

Forensic analysis of Internet worms [25, 8, 14] has recently received attention. Xie et al.

proposed a random moonwalk algorithm to detect the origin of an epidemic attack by identifying

the initial causal flows in an attack [25]. Network telescopes have been suggested as an alternative

approach to reconstruct worm attacks [8, 14]. Worm forensic analysis can benefit from a better

understanding of attack causality, especially if causality can be established without relying on

attack-specific information.

3 Establishing Worm Causality: An Overview

Figure 1 depicts a conceptual overview of how we can combine host-based anomaly detection

with flow-level correlation to identify causal flows. The first step involves a host-based anomaly

detector. This detector will identify anomalous events by auditing network traffic, and flag hosts

associated with abnormal activities. The requirements we desire of such an anomaly detector are

that it should: (1) operate on fairly coarse-grained network-level observations without depending

on prior understanding of attacks, (2) have low false-negative and false-positive rates, and (3)

provide timing information on when the anomalous behavior of the flagged hosts began.

This host-based anomaly information will be provided as input to the correlation module,

which uses historical traffic data along with previously reported anomaly events to identify po-

tential causal flows. The basic idea is to correlate the traffic flows between infected hosts and their

approximate infection times for establishing causality. When the detection module outputs a new

anomaly event indicating that a host h might be infected at time t, the correlation module queries

the traffic archive to retrieve traffic flows originating from other anomalous hosts (this information

can be obtained by querying the anomaly history) and incoming into host h before t. Among these

flows, the correlation module selects a subset of flows to investigate as possible sources of attack

causality.

Let us consider a simple example on how we can correlate network events, using the informa-

tion from anomaly timestamps to identify causal flows. Suppose two hosts A and B are flagged as

anomalies with infection times of ta and tb, respectively, with tb > ta. If during the time between

ta and tb, A “talks” to B, and there are no other incoming flows into B between ta and tb, then we

can consider this flow from A to B as a potential causal flow that caused B to get infected, based

on the following rationale. Before the flow from A occurred, B was not anomalous. But B became

3

TRAFFIC
RECORDS

QUERY
RESPONSE

TRAFFIC ARCHIVE

ANOMALY HISTORY

QUERY

RESPONSE

ANOMALY
INFO

ANOMALY
INFO

SUSPICIOUS
FLOWS

PER−HOST
ANOMALY

DETECTION

FLOW−LEVEL

CORRELATION
& ANALYIS

Figure 1: The host-based detection module identifies anomalous hosts. For each such anomaly,

the correlation module analyzes candidate flows from the historical traffic archive which have the

anomalous host as the destination.

anomalous after the flow occurred, and A is already known to be an anomalous host. It is therefore

likely that this traffic event (A talking to B) caused the subsequent anomalous behavior on host B.

In this example, we are merely using the timing information provided by the host-based anomaly

detection system. It is possible to incorporate additional traffic features during this correlation

step. For example, we can preclude known non-attack flows using port and server white-lists, and

filter out such flows. Alternatively, we can automatically infer some properties of the attack (e.g.,

the destination port of the vulnerable service) and use these features to further refine the selection

of candidate flows which we need to examine. Section 5.2 outlines the correlation step in greater

detail.

This approach builds on the intuition that communication patterns in network traffic are rel-

atively sparse, both temporally and spatially. Temporal sparsity implies that the rates of com-

munication of normal hosts tends to be relatively low. Spatial sparsity can be viewed along two

dimensions. The first dimension is that the set of hosts that normal hosts communicate with tends

to be stable over time. Earlier studies have shown that normal clients have significant locality in the

set of hosts with which they communicate [23, 11, 17, 10]. The second dimension is that traffic pat-

terns tend to exhibit predominantly client-server like behavior. This observation holds especially

in enterprise environments; P2P applications are often restricted and the majority of connections

are directed toward a small set of network servers [13]. This has favorable implications for our ap-

proach. First, we can utilize the sparsity of normal communication behavior to design host-based

anomaly detection techniques that are independent of attack signatures, scanning rates, and other

attack-specific properties. Second, spatial sparsity suggests that most normal clients will have few

legitimate incoming connections. Thus once hosts have been flagged as having anomalous activity,

we only need to look for a small number of incoming flows that precede the start of the anomaly.

Therefore the likelihood that we will select the causal flow which actually caused the subsequent

anomaly will be high.

While the above approach appears conceptually simple, several challenging questions remain.

First, can we systematically confirm the high-level intuition behind this approach? Second, what

4

is the design-space for the correlation module – e.g., how long into the history do we have to

look back to select a candidate causal flow, how much performance improvement can we obtain

by using additional traffic features? Third, how robust will this approach be across a spectrum of

attacks? Last, can we realize such a system to operate in real-time with low overhead? We address

these questions using analysis, trace-driven evaluations, and a real prototype based study.

4 Intuition

In this section we present some intuition behind our hypothesis, derived from two studies. First, we

present a measurement study to confirm the sparsity in normal traffic patterns. Second, we present

an analytical study under a simplified network model to reason about the approach outlined in the

previous section.

4.1 Sparsity in normal network traffic

10
−4

10
−2

10
0

10
2

10
4

0

0.2

0.4

0.6

0.8

1

Number of distinct incoming connections per five−minute

F
ra

ct
io

n
of

 h
os

ts

Intra−university
Internet
Total

(a) Incoming connections

10
−4

10
−2

10
0

10
2

10
4

0

0.2

0.4

0.6

0.8

1

Number of distinct outgoing connections per five−minute

F
ra

ct
io

n
of

 h
os

ts

Intra−university
Internet
Total

(b) Outgoing connections

Figure 2: Measurement study of per-host behavior in a large university network

We present some quantitative justification regarding the sparsity of inter-host communication

patterns. For this, we took a month-long trace (in Feb 2005) from a medium-sized university’s

core network. For each observed university host in the trace (there were in excess of 16000 unique

active IP addresses), we find the number of distinct incoming and outgoing connections for every

5-minute interval, and average these values over the month. Here, a distinct connection refers to

flows to/from distinct IP addresses. The connections are split into two categories, those within the

university, and those which cross the border into the Internet. Figure 2(a) shows the distribution of

the rates of traffic incoming to each of the identified hosts within the network, while Figure 2(b)

shows similar results for the rates of outgoing traffic connections. We find that more than 90% of

the hosts receive on average less than one distinct connection (both intra-university and Internet

traffic together) over a five-minute interval. These results suggest that normal traffic patterns tend

5

to be reasonably sparse, both in terms of traffic rates and the nature of inter-host communication

patterns. Such trends are representative of enterprise environments, and similar observations have

been echoed in several studies [11, 13, 23, 10].

4.2 Analytical Model

We use an analytical study with a simplified network and attack model to reason about the approach

outlined in Section 3. We assume a ubiquitous monitoring infrastructure within a N -host network,

where we can observe the behavior of all the N hosts. The attack is a worm-like attack spreading

within the N -host network. We assume a discrete-time model of network traffic, in which every

network flow (of the form 〈src, dst, time〉) has a length of one time unit, and each flow starts at

the beginning of a time unit and finishes before the start of the next time unit.

To model the communication patterns of normal (non-infected) hosts, we assume each normal

host initiates α concurrent outgoing flows per time unit. These normal traffic flows are a mix of

client-server traffic and random destination traffic. Specifically, out of the α flows initiated by each

host per time unit, a fraction U of the flows are to destinations selected uniformly at random. The

remaining 1 − U fraction of flows are sent to a small number of servers (which are assumed to be

immune to client vulnerabilities) in the network.

The attack is specified by the attack-rate and the fraction of vulnerable hosts (F). Once a host

is infected, it starts malicious scanning at a rate of γ attack flows per time unit. Attacks use uniform

random-scanning, where for each attack flow an infected host picks a random host from the N -host

network. To simplify our analysis, we assume that attacks have zero incubation time, i.e., infected

nodes start scanning as soon as they are infected. We will revisit the concept of incubation in

Section 5.3.

Next, we assume there is a host-based anomaly detection system that reports infected hosts

with zero false-negatives3, but has a false-alarm rate β. Given β, the number of hosts that have

been falsely flagged by the host-based anomaly detection system, i.e., the host false-positive is

HFP = β × N . For the purpose of our discussion, we assume that the time-line starts from 0,

when the attack starts to spread. We assume that these host false alarms occur before the attack

starts, noting that assumption will only cause the inaccuracy to be over-estimated4.

We are interested in the accuracy of identifying causal attack flows, in terms of the causal false

negative rate (CFN) and the causal false positive rate (CFP). A causal false negative means

that for an infected host h, we fail to identify the causal flow associated with the infection event.

Suppose the number of causal flows that are missed is misses . The causal false negative rate will be

the fraction of actual causal flows missed, i.e., CFN = misses
F×N

. The denominator F ×N represents

3Using threshold-based detection we can design host-based detection systems with zero false-negatives. If the

worm scan-rate is known, then we can set a threshold lower than the scan-rate to detect all infected hosts, i.e., with

zero false-negative rate. When the scan-rate is not known, the multi-resolution approach [17] can provide zero false-

negative rate over a spectrum of worm-rates.
4For each infected host h, we are going to look for candidate causal flows, i.e., an incoming connection into host h,

from another host h′ known to be anomalous prior to the connection. By assuming that all the host false-alarms occur

before the start of the attack, we only increase the set of candidate flows that we need to examine. This assumption

can only increase the inaccuracy.

6

10
−4

10
−2

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ratio of per−host normal traffic rate to attack rate

C
au

sa
l f

al
se

 p
os

iti
ve

 r
at

e

U = 100%
U = 50%
U = 10%
U = 1%

10
−4

10
−2

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ratio of per−host normal traffic rate to attack rate

C
au

sa
l f

al
se

 n
eg

at
iv

e
ra

te

U = 100%
U = 50%
U = 10%
U = 1%

(a) Causal False Positive (b) Causal False Negative

Figure 3: Varying background traffic rate, γ = 5, F = 0.1, β = 0.05

the number of infected hosts, and thus the total number of causal flows.

A causal false positive implies that a non-causal flow is reported as a suspicious flow. The

causal false positive rate is then the fraction of non-causal flows among the set of flows returned.

We assume that for each anomalous host (this includes the set of infected hosts and the false-

alarms from the host-based anomaly detection system) we will be able to find at least one incoming

candidate flow to return as the possible causal flow. Thus the total number of flows returned will

be the number of anomalous hosts, i.e, TotalReturned = NumInfected + NumFalseAlarms =
F ×N +HFP . To quantify the CFP , we need to identify the number of non-causal flows returned

by the correlation module. There are two contributions to the set of causal false positives. The

first contribution is the flows returned for the set of HFP false alarms. The second contribution

will be non-causal flows which are falsely identified as causal flows for the infected hosts. Since

the host-based anomaly detection component has no false-negatives, the number of causal flows

which are missed (misses) is equal to the number of such non-causal flows reported, i.e., for every

missed causal flow there is a corresponding contribution to the set of causal false positives. Thus,

CFP = misses+HFP
TotalReturned

= misses+HFP
F×N+HFP

.

Our task then is to quantify misses . Let us consider an infected host h which has been flagged

by the host-based anomaly detection system at time i since the start of the attack. In the correlation

step, we are going to look back into the previous time unit from the infection time (since we assume

the attack has zero incubation time). To simplify our analysis, we assume that out of the set of

candidate flows within this preceding time unit, the correlation module reports one of the flows at

random5. Let C(i) denote the number of candidate non-causal flows that arrive at the host h at time

i, and n(i) denote the number of hosts infected before time i. Now, candidate flows at time i can

arise only from sources that have already been flagged as anomalies by time i− 1. These hosts are

either (a) hosts infected by the attack, or (b) false-alarms from the host-based anomaly detection

system. There are n(i − 1) hosts infected at time i − 1. Since one of these n(i − 1) is involved

5This eliminates the difficulty in modeling the temporal ordering between infection flows with identical times-

tamps.

7

10
−4

10
−3

10
−2

0

0.1

0.2

0.3

0.4

0.5

False positive rate of host detection

C
au

sa
l f

al
se

 p
os

iti
ve

 r
at

e

U = 100%
U = 50%
U = 10%
U = 1%

10
−4

10
−3

10
−2

0

0.1

0.2

0.3

0.4

0.5

False positive rate of host detection

C
au

sa
l f

al
se

 n
eg

at
iv

e
ra

te

U = 100%
U = 50%
U = 10%
U = 1%

(a) Causal False Positive (b) Causal False Negative

Figure 4: Varying β the host false positive rate, γ = 5, F = 0.1, α = 0.5

in the actual causal flow, we only need to consider the flows from the remaining n(i − 1) − 1
infected hosts. These infected hosts will contribute both attack flows and normal flows to the set

of candidate flows incoming into host h. The contribution of the attack flows is
(n(i−1)−1)×γ

N
, and

the contribution of the non-attack flows from these hosts is
(n(i−1)−1)×α×U)

N
. In addition to these

infected hosts, there are also the flows from the host false-positives. There are HFP such hosts

each contributing α×U
N

flows to the set of candidate flows. The number of candidate flows is:

C(i) =
(n(i − 1) − 1) × (γ + α × U)

N
︸ ︷︷ ︸

From infected hosts

+
HFP × α × U

N
︸ ︷︷ ︸

From false alarm hosts

In each of the two contributing terms, the factor U determines the fraction of normal background

traffic that is intended to random destinations. Since all the flow terms in the above equation are

based on selecting the destination uniformly at random, the term N in the denominator indicates

the number of flows which will be reach a particular host h. Given C(i), the probability of picking

a non-causal flow coming into host h at time i will be
C(i)

1+C(i)
. The denominator here represents

the number of candidate flows from which we need to select (the actual causal flow and the C(i)
non-causal flows).

n(i), the number of infected hosts at time i can be estimated using the epidemic spreading

model [3, 18]. In this model, the number of newly infected hosts at time i is related to the number

infected at time i − 1 as follows:

newinfected(i) =

{
1 i = 0

n(i − 1)
[

γ × (F×N−n(i−1))
N

]

i > 0

The number of hosts infected at time i is simply n(i) = n(i − 1) + newinfected(i).
The number of misses is related to C and n values as:

misses =
∑

i

n(i) ×
C(i)

1 + C(i)

8

We proceed to examine how the CFP and CFN depend on the normal traffic parameters, and

the accuracy of the host-based anomaly detection system. For this study, we fix the network size

to be N = 15000 and the attack scan-rate γ = 5. Figure 3 shows that as we increase the rate α
of normal traffic flows, the CFP and CFN increase as expected. When the normal traffic rate is

significantly more than the attack-rate (the x-axis represents the ratio between the per-host normal

traffic rate α and the per-host attack-rate γ) the accuracy is very low for higher values of U , but at

lower U the performance is independent of the normal traffic rate. This provides the first intuition:

if normal traffic patterns are sparse, in terms of the rates and communication patterns, then we can

establish causality with high accuracy.

In Figure 4, we vary β, the false positive rate of the host-based anomaly detection system.

Intuitively, as the number of false alarms from the anomaly detection component increases, the

CFP and CFN will increase. The CFP does show a sharp increase as we increase β, since the

contribution of the causal false-positives returned for host false-positives increases. However, as

long as the β is relatively low (i.e., less than 0.1) the CFN is almost constant. We also notice

that when U is very small (i.e., client-server traffic predominates), the effect of β on the CFN is

reduced further. This provides the second intuition: as long as the host-based anomaly detection

system has a low false alarm rate, we can obtain accurate causality information, i.e., the causal

false negative rate is low.

5 Approach

5.1 Host-Based Anomaly Detection

Our approach requires a host-based anomaly detection system to detect infected hosts and report

their approximate infection times. While our framework can accommodate many anomaly detec-

tors, in this paper we focus on using threshold-based detection based on monitoring the number of

unique destinations contacted by each host. The strength of such threshold-based detection is that

(a) it is easy to implement, and (b) it does not depend on attack-specific features such as signatures

and scanning strategies. However, traditional threshold-based detection suffers from an inflexibil-

ity in threshold-selection, i.e., the spectrum of attack-rates which can be detected is tightly coupled

to the threshold value and the window-size selected. For example, if we choose a threshold of

100 distinct connections in 10 seconds, it cannot detect attacks which have a scan-rate less than 10

scans per second. The multi-resolution approach [17] offers a simple extension to threshold-based

detection, in which the detection system can be designed to be robust across a wide spectrum of

attack rates. We adopt this approach for host-based anomaly detection. This idea is based on the

simple observation that due to locality in end-host communication patterns, the number of distinct

destinations each host contacts grows as a concave function of the size of the time window (i.e.,

the second derivative with respect to the time window size is negative). By simultaneously using

multiple threshold values, each applied at a different time resolution, we can detect a wide range

of attack rates.

The procedure for host-based anomaly detection using a multi-resolution approach is outlined

in Figure 5. The detection system first obtains the number of distinct destination addresses con-

9

MULTIRESOLUTIONDETECTION(W,T,H,M)

// W is the set of time resolutions

// T : W → R is the set of thresholds

// H is the set of hosts

// M : H × W → R is the set of measurements

1 for each host h ∈ |H| do

2 for each window w ∈ |W | do

// Check if it exceeds the threshold

3 if (M(h,w) > T (w)) then

// Report the host, timestamp, and resolution

4 Flag 〈h, currenttime, w〉 as an anomaly

Figure 5: Multi-resolution detection

tacted by each host in the network using sliding windows of different sizes (in the resolution set

W) to obtain per-host measurements. T (w) represents the threshold for the number of unique

destinations contacted as a function of the time window for each w ∈ W . For each host h,

and each window size w, it checks if the measured value is greater than the detection threshold

T (w). A host’s behavior is flagged as anomalous if its activity exceeds the corresponding thresh-

old for any of the constituent resolutions. Each alarm raised by the system is a tuple of the form

〈hostid , timestamp, w〉, which means that hostid exceeded the connection threshold for the time

window of size w ending at timestamp. The detector outputs a set of per-host alarms, indicat-

ing the alarm time, and the corresponding time-resolution at which the host was flagged. This

information will be subsequently used by the correlation module.

Threshold Selection6: First, we select a set of window-sizes for the multi-resolution approach.

In our evaluations (Section 6) and prototype implementation (Section 7) we use window sizes

ranging from 5 seconds to 300 seconds, with intermediate values of 10, 20, 60, 100, and 200

seconds. We then proceed to analyze historical traffic records of host communication patterns.

From these historical datasets, we obtain the distribution of traffic rates across all hosts for each

of the window-sizes of interest. For example, for a window-size of 100 seconds, we compute the

number of distinct destinations contacted by each host in our network over all possible sliding

windows of duration 100 seconds over the traffic history. Given these observations, we proceed

to obtain statistical percentiles over the distributions for each window-size. We select the 99.5th

percentile of the distribution for each of the windows from 5 seconds to 300 seconds. These

values (the number of distinct destinations contacted over different window sizes) are used as the

connection thresholds (i.e., T (w)) in the multi-resolution approach.

6This is a simpler threshold-selection method compared to Sekar et al. [17]

10

FINDCAUSALFLOW(h, alarmtime,A, F, lookback)

// h is the host on which the anomaly is reported

// A is the set of previously reported anomaly

// flow = 〈src, dst, stime, etime, sport, dport〉
// flowcheck is a boolean function on flow attributes

1 Get PotentialCandidates from the traffic flow archive

{f |f .dst = h, f .etime ≥ alarmtime − lookback}
2 Sort PotentialCandidates in increasing order of stime

3 for each flow ∈ PotentialCandidates do

4 if (flowcheck(flow) = TRUE) then

// Is the source of flow already anomalous?

5 if (A[src].start < flow .stime < A[src].end) then

6 Report flow as being causal for host h

Figure 6: Temporal correlation among network flows to identify potentially causal events

5.2 Correlation

Given the input from the the detection module, i.e., a list of anomalous hosts and the corresponding

anomaly timestamps the correlation module analyzes their communication events and outputs a

list of potentially causal flows. In order to do so, the correlation module has access to the set

of archived traffic records for the monitored network and previously reported per-host anomalies.

Each entry in the historical anomaly database has two timestamps, indicating the start and end

times of the anomaly event. We allow for the fact that anomalies may have an end-time, i.e.,

possibly indicating when the host was patched or quarantined from the network. If the anomaly

does not end, we assume the end time of the anomaly to be ∞.

Given the alarm reported on host h, the procedure (Figure 6) first retrieves a set of incoming

flows that have been observed at host h, in the last lookback seconds7. This set is then sorted

in increasing order of the flow start time. Among these flows, we look for the earliest flow such

that, (1) the flow satisfies the flow-condition flowcheck ; and (2) the flow was initiated within the

interval when its source was detected as an anomalous host. For a purely timing-based correla-

tion approach, the condition flowcheck always returns true. When we use additional conditions,

for example to use whitelists (Section 5.4.1) or to specify a filter based on destination ports (Sec-

tion 5.4.2), then flowcheck can be modified suitably to specify these conditions.

Deciding an appropriate value of lookback is tricky for two reasons. First, since host-based

anomaly detection systems can have a detection latency, the time at which the anomaly is reported

might be greater than the actual infection time. The second source of inaccuracy arises from the

attack dimension. For naive attacks which start scanning as soon as they are infected, it seems

7The analysis in Section 4.2 assumes that the reported infection times are accurate. In reality this may not be the

case. Hence, we adopt a conservative strategy of looking back a finite interval instead of looking for an immediately

preceding flow.

11

INFERINCUBATIONOFATTACK

1 Identify the start and stop time of the attack.

Obtain the attack duration d.

2 Compute the scan-rate γ of the attack.

3 Infer the fraction (F) of the host-population infected.

4 Simulate hitlist worms fixing parameters

(scan-rate=γ, duration=d, fraction vulnerable=F).

Vary the incubation period parameter P .

5 Obtain the best-fit incubation period that provides

the best-fit to the observed worm growth.

// Sim is the simulated worm growth

// Obs is the observed worm growth

P̂ = argminP L1Norm(Sim(′Hitlist′, γ, d, F, P),Obs)

Figure 7: Inferring the incubation parameter

appropriate to look for flows immediately near the time of the anomaly. However, attacks can

evade this limited notion of causality by incorporating a longer latency between the infection time

and the start of scanning activity. Thus attacks could employ an incubation strategy to delay the

onset of discernible anomalous activity after getting infected.

If the lookback window is too small then we may miss the actual causal flow (increasing the

causal false negative rate CFN), either because attacks use a long incubation period or because

the detection system reports alarms later than the actual infection time. On the other hand, if the

lookback window is too large, we run the risk of reporting unrelated network events as possible

sources of attack causality (i.e., increasing the causal false positive rate CFP). We define two

strategies in determining the lookback value. One alternative is an immediate lookback approach,

which searches for flows within a finite window from the time the anomaly is reported. In our

implementation of the immediate lookback approach, we use a lookback window which is equal

to the time-resolution on which the anomaly is reported. The alternative infinite lookback searches

for flows within an infinite window from the anomaly.

5.3 Inferring the incubation period

As we saw in the earlier discussion, attacks can employ a smart incubation strategy. A natural

question is whether a lookback window can be inferred in such cases to account for the incubation

period of the attack. One alternative is to analyze the worm payload to identify the exact incubation

strategy used. We suggest an alternative data-driven approach (Figure 7), which does not depend

on such worm-payload analysis.

The high-level idea behind our approach is that we reverse-engineer the attack’s incubation

parameter using the information we have from our traffic trace and anomaly information. Now,

12

there are several unknowns: the attack scan-rate, the attack duration, the attack’s scanning strategy,

the number of hosts vulnerable to the attack in the network, and the incubation parameter. Our

approach is to try and estimate all the unknowns except the incubation parameter, and then use

simulations to infer the incubation parameter which best matches the observed worm growth.

First, we infer the attack start and stop time by temporally clustering the per-host alarms, and

finding the start and stop times of the largest such cluster. From this we estimate the duration of

the attack. The scanning-rate of the attack can be approximated by the average outgoing traffic

rate of the hosts that have been flagged within this largest cluster. Since the traffic rates of non-

attack traffic are not that high, this will be a good estimate of the attack scanning-rate. The fraction

of hosts vulnerable can be approximated by counting the number of distinct hosts that have been

flagged by the host-based detection system.

Since we may not know the worm scanning strategy without a detailed understanding of the

attack, in the simulations we use a hitlist scan worm. The rationale is that using an attack with a

more effective scanning strategy can only give a overestimate of the actual incubation period. A

hitlist worm, by definition has prior knowledge of the vulnerable population and thus has a very

effective scanning strategy (it always picks only vulnerable hosts when selecting destinations to

scan). In other words, by using a hitlist worm in our inference if we do err in our assumption

of the scanning strategy, it will only cause us to infer an incubation period which is larger than

the actual attack incubation period. If we had inferred an incubation period smaller than attack’s

actual incubation period, it would lead to a very high CFN since the lookback interval would be

too small. By inferring a slightly larger incubation period, we will not incur such false-negatives.

The last step is to identify the incubation period that best explains our observed sequence of

per-host anomalies, i.e., a maximum likelihood estimate of the incubation period over a range

of possible values. We use a error metric defined as the L-1 norm difference between observed

infection spread (i.e., the number of hosts infected as a function of time) and simulated infection

spread over k = 5 independent runs, and pick the incubation period with the smallest L-1 norm

error.

5.4 Improving Timing-Based Correlation

Next, we describe two alternatives for specifying additional flow features that can be specified

within the flow-condition flowcheck . These additional features may trade-off some of the attack-

agnostic characteristics of our basic approach. Nevertheless, they are practical solutions that can

benefit system administrators to prune their search space, and it is prudent to examine these as

viable enhancements.

5.4.1 Whitelisting

Rule-based whitelists are commonly used in IDSes to rule out known causes of anomalies to re-

duce the effective false alarm rate. IDSes such as Snort [15] typically provide rules to allow

servers and server-connections on specific ports to be whitelisted. Proceeding on similar lines, we

use a server and port-based whitelisting option. In addition we can also allow for known non-

causal connections to be removed from consideration. These may include administrative scans or

13

“failed” connections from background scanning activity [26]. Our first enhancement to the basic

temporal correlation procedure is the use of whitelists to rule out known non-attack flows, which

may potentially appear as having some causal relationship, and flows which are unlikely to have

causal impact on host behavior (e.g., failed connections).

5.4.2 Iterative Feature Extraction

A second enhancement, which can be implemented while operating in post-mortem analysis mode,

is to identify dominant features of attack traffic. These features can then be used to iteratively refine

the set of suspicious flows. In the iterative refinement process, the first iteration starts by perform-

ing the basic temporal correlation procedure in Figure 6, with the flow-condition flowcheck always

returning true. At the end of the ith iteration, we identify dominant traffic features that are com-

mon to the suspicious flows. Specifically, we identify destination ports that contribute a substantial

fraction of suspicious flows. For subsequent iterations, we restrict ourselves to traffic on these

identified ports, by updating flowcheck to specify the subset of ports which are interesting. The

iterative process continues till the set of returned suspicious flows does not change substantially

across iterations. If no dominant ports are identified the refinement ends in that iteration. Since

most known attacks propagate using a small number of vulnerabilities and vulnerable services, the

intuition is that this iterative refinement will reduce the number of causal false positives. This may

also reduce causal false negatives by avoiding causal misses arising because the system returns a

non-causal flow instead of the actual causal flow.

6 Trace-Driven Evaluation

We use a seven-hour traffic trace from the core of a large university network to evaluate our ap-

proach. The trace was collected on Feb 8, 2005 between 1-8 pm. It contained over 5.5 million

flows with over 16000 active hosts. The trace contains flow-level [2] records similar to Netflow,

with the added capability to provide indications of session directionality of each flow using TCP

flags and timestamps (for UDP flows). We identify all intra-university flows (using network-prefix

information) from each trace. These serve as representative background (i.e., non-attack) traffic for

our analysis. We use synthetically introduced attack traffic records in the following evaluations.

We repeated the experiments with several different trace snapshots, but only present the results

from the Feb 8 trace since the results were similar. Broadly, we answer the following questions in

this section:

• How does the accuracy of causality determination vary across the spectrum of attack param-

eters including the scanning rate, scanning strategy (e.g., random vs. hitlist vs. topological

worms), and the extent of attack stealthiness (in terms of the incubation parameter)?

• How does the infinite lookback approach compare with the immediate lookback strategy?

Do we need an accurate lookback parameter for causality determination?

• What are the main factors contributing to inaccuracy, i.e, what are the reasons for false

positives and false negatives?

14

• Does the use of additional traffic features in the correlation step (iterative feature extraction

and whitelists) improve performance? Can this additional information compensate for poor

lookback information?

6.1 Varying Scan Model and Rate

We use three different worm scanning strategies: random-scan, hitlist, and topological-scan at-

tacks. We also vary the range of worm-scanning rates (expressed in terms of a normalized rate,

the ratio of the scanning rate of each infected host with respect to the mean per-host traffic rate

we observe in normal traffic). The random scanning attack selects destination targets uniformly at

random within the host address-space. The hitlist attack is assumed to have complete knowledge

of the set of vulnerable hosts, and scans are restricted to these hosts. In the topological attack, the

worm is assumed to have knowledge of each infected hosts normal communication patterns, and

attack traffic mimics these normal communication patterns while selecting destinations to scan8.

To evaluate the accuracy of detecting causal flows we use two natural metrics. The causal false

positive rate (CFP) is defined as the fraction of identified flows which are non-causal, i.e., are not

associated with attack causality in the synthetically introduced attack traffic. Some of these may

have causal implications for other incidents unrelated to our synthetic attack traffic, but we report

them as false positives to get a conservative overestimate. The causal false negative rate (CFN)

is the fraction of causal flows that are not detected by our system. Figure 8 shows the causal

detection accuracy in terms of the CFP and CFN using an immediate lookback approach. While

the accuracy seems to be rate-independent for the random and hitlist worms (with the CFP around

20%) we find that the accuracy is poor for the topological scanning worm at low scan-rates. We

also considered the alternative infinite lookback approach for these scenarios, but the performance

is significantly worse (Figure 9), with the CFP and CFN exceeding 70%.

We are also interested in a breakdown of the types of misses among the causal false negatives

(Figure 10). To further understand the nature of these misses, we categorize false negatives into

several categories: 1. the anomaly detector failed to flag the source of the causal flow, 2. the

anomaly detector failed to flag the destination of a causal flow, 3. the timing information provided

by the detector for the source of the causal flow is incorrect (i.e., the reported infection time for the

source is greater than the causal flow’s timestamp), 4. the lookback period is insufficient to identify

the causal flow, 5. the time at which the anomaly is reported on the destination of the causal flow

is earlier than the causal flow, or 6. the system returned a candidate flow earlier than the actual

causal flow even though the detection times are correct. The results for the hitlist attack are quite

similar to the random-scan attack and are not presented in the remainder of our discussion. In both

the random and topological attacks, we observe that the largest contributing factor is the presence

of earlier candidate flows. For the topological worm, we find that at low scanning rates there is

also a non-trivial contribution from source-timing errors, and even some misses from the anomaly

detection system.

8In our specific implementation of the topological attack, an infected host picks scan-targets according to the

following rule. With probability p = 0.4 it picks a destination it has already contacted, and with probability p = 0.6 it

picks a random destination.

15

10 15 20 25 30
0.1

0.2

0.3

0.4

0.5

0.6

Normalized attack scanning rate

F
al

se
 p

os
iti

ve
 r

at
e

Random
Vulnerable
Topological

10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Normalized attack scanning rate

F
al

se
 n

eg
at

iv
e

ra
te

Random
Vulnerable
Topological

(a) Causal False Positive (b) Causal False Negative

Figure 8: Accuracy vs. worm scan-rate across different attack models with immediate lookback

2 3 4 5 6
0.72

0.74

0.76

0.78

0.8

0.82

0.84

Normalized attack scanning rate

F
al

se
 p

os
iti

ve
 r

at
e

Random
Vulnerable
Topological

2 3 4 5 6
0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

Normalized attack scanning rate

F
al

se
 n

eg
at

iv
e

ra
te

Random
Vulnerable
Topological

(a) False Positive (b) False Negative

Figure 9: Accuracy vs. worm scan-rate across different attack models with infinite lookback

A breakdown of the false negatives with the infinite lookback approach approach (Figure 11)

also indicates that the vast majority of errors (more than 60%) arise because the system returns

earlier candidate flows. Note that unlike the immediate lookback approach, we cannot have errors

due to insufficient lookback, and thus we do not have to consider these sources of causal misses in

the breakdown. The main disadvantage of an infinite lookback approach is that it may report traffic

flows quite early in time unrelated to actual attack traffic as potential sources of attack causality.

Analyzing the set of causal false positives (Figures 12 and 13) reveals that most of these flows

have a few common features. They typically occur on a small number of destination ports, and arise

from a small number of source addresses. The ports include common Windows-RPC services that

are known to be associated with background scans (such as ports 135, 139, 445)9, AFS servers

(ports 7000-7002), DNS traffic (on port 53), some DHCP server traffic (port 67), and a small

9Since these scans are unrelated to the synthetically introduced attacks, we treat these flows as potential false-

positives. Uncovering such potentially causal scanning traffic may not necessarily be construed as a false positive.

16

10 15 20 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

F
al

se
 n

eg
at

iv
e

ra
te

Normalized scan rate

SRC NOT FLAGGED
DST NOT FLAGGED
SRC TIME ERROR
EARLIER ANOMALY
EARLIER CANDIDATE FLOW
INSUFFICIENT LOOKBACK

10 15 20 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F
al

se
 n

eg
at

iv
e

ra
te

Normalized scan rate

SRC NOT FLAGGED
DST NOT FLAGGED
SRC TIME ERROR
EARLIER ANOMALY
EARLIER CANDIDATE FLOW
INSUFFICIENT LOOKBACK

(a) Random (b) Topological

Figure 10: Breakdown of causal false negatives with immediate lookback

10 15 20 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
al

se
 n

eg
at

iv
e

ra
te

Normalized scan rate

SRC NOT FLAGGED
DST NOT FLAGGED
SRC TIME ERROR
EARLIER CANDIDATE

10 15 20 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F
al

se
 n

eg
at

iv
e

ra
te

Normalized scan rate

SRC NOT FLAGGED
DST NOT FLAGGED
SRC TIME ERROR
EARLIER CANDIDATE

(a) Random (b) Topological

Figure 11: Breakdown of causal false negatives with infinite lookback

number of SNMP connections (on port 161). The fact that the causal false positives have a small

number of known causes has favorable implications. By filtering out these known non-causal traffic

flows, using whitelists and iterative feature extraction, we might be able to potentially improve the

causal detection accuracy. The poor accuracy for low-rate topological worms also deserves further

attention in understanding the sources of false-positives. We find in more than two-thirds of the

causal false-positives were in fact attack flows (Figure 12 (b)). However, these attack flows are

not causal but are repeated infection attempts, since the timing information was incorrect (i.e., the

alarm is reported later than the actual infection event) for many of the hosts. Since the topological

worm mimics the nature of normal communication patterns there are more errors from the anomaly

detection system in this case.

17

10 15 20 30
0

0.05

0.1

0.15

0.2

0.25

Normalized scan rate

F
al

se
 p

os
iti

ve
 r

at
e

Server
Scanner
Attack
Other

10 15 20 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Normalized scan rate

F
al

se
 p

os
iti

ve
 r

at
e

Server
Scanner
Attack
Other

(a) Random (b) Topological

Figure 12: Breakdown of causal false positives with immediate lookback

10 15 20 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Normalized scan rate

F
al

se
 p

os
iti

ve
 r

at
e

Server
Scanner
Attack
Other

10 15 20 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Normalized scan rate

F
al

se
 p

os
iti

ve
 r

at
e

Server
Scanner
Attack
Other

(a) Random (b) Topological

Figure 13: Breakdown of causal false positives with infinite lookback

6.2 Using attack feature identification

We focus on identifying the top k common destination ports from the set of suspicious flows (refer

Section 5.4.2). Instead of selecting a fixed k, we identify ports which contribute more than 5%

to the set of suspicious flows. Then, we iteratively refine the set of suspicious flows by repeating

the correlation procedure (Figure 6) with the flow selection function flowcheck updated each time

to reflect the subset of destination ports that are of interest at the current iteration. The stopping

condition for the iterative procedure is defined in terms of the similarity between the set of flows

returned across successive iterations – if there is more than 95% overlap between the set of returned

flows across two successive iterations we terminate the refinement at that stage. In our experiments

we found that this process of refinement usually terminated in 3-4 iterations. Figure 14 depicts

the improvement in the CFP by performing such an iterative attack feature refinement. Since

the feature identification attempts to infer the destination port of the attack, we vary the port on

18

 80 7001 135 137 34567 123 445 53
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Port used by attack for propagation

F
al

se
 p

os
iti

ve
 r

at
e

Before
After

 80 7001 135 137 34567 123 445 53
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Port used by attack for propagation

F
al

se
 p

os
iti

ve
 r

at
e

Before
After

(a) Immediate Lookback (b) Infinite lookback

Figure 14: Improvement using feature extraction, varying the attack ports with a random-scan

worm

which the attack can propagate. We observe that with the immediate lookback approach, there

is a dramatic reduction in the CFP , independent of the port used by the attack. However, the

improvement with the infinite lookback approach is less pronounced. The reason for this can be

better understood by reflecting on the results from Figure 13. With an infinite lookback approach,

causal false positives from scanners and servers constitute a majority of the flows identified after

the first iteration. Given that we select ports which contribute more than 5% of suspicious flows,

these flows do not get filtered out even after many iterations, since the starting configuration has a

majority of non-attack flows.

6.3 Effect of Whitelists

10 15 20 25 30
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Normalized scan−rate

F
al

se
 n

eg
at

iv
e

ra
te

WITHOUT WHITELIST
WHITELISTING PORTS
WHITELISTING SOURCES
WHITELISTING PORTS AND SOURCES

10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Normalized scan−rate

F
al

se
 n

eg
at

iv
e

ra
te

WITHOUT WHITELIST
WHITELISTING PORTS
WHITELISTING SOURCES
WHITELISTING PORTS AND SOURCES

(a) Random (b) Topological

Figure 15: Whitelists with immediate lookback

19

10 15 20 25 30
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Normalized scan−rate

F
al

se
 n

eg
at

iv
e

ra
te

WITHOUT WHITELIST
WHITELISTING PORTS
WHITELISTING SOURCES
WHITELISTING PORTS AND SOURCES

10 15 20 25 30
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Normalized scan−rate

F
al

se
 n

eg
at

iv
e

ra
te

WITHOUT WHITELIST
WHITELISTING PORTS
WHITELISTING SOURCES
WHITELISTING PORTS AND SOURCES

(a) Random (b) Topological

Figure 16: Whitelists with infinite lookback

We consider two-types of whitelists (refer Section 5.4.1): using destination port numbers and

using source addresses. In each case, we use the top five contributing ports (sources) to the causal

false-positives and consider the case when we ignore the flows involving these ports (sources) in the

correlation step10. Recall (from Figures 12 and 13) that these traffic patterns typically correspond

to servers and scanners. In Figure 15 we observe with the random scan attack, we get a two-fold

improvement in the accuracy. With the topological attack, however, we notice that at lower scan-

rates the performance improvement is not quite as significant. The reason is evident if we consider

the results of Figure 12(b). At low scan-rates, a predominant number of causal false positives in

the topological attack scenario are actually attack flows. Using whitelists will not alleviate this

problem. The second question of interest is whether the additional whitelists aid in improving the

performance of the infinite lookback strategy. This approach is appealing since it does not depend

on accurate anomaly timestamps or lookback parameters. Figure 16 shows a promising result.

Eliminating the known non-causal connections gives a three-fold improvement in the performance

for both the topological and the random scan worms. We notice that even using a small white-list

(top-five ports and hosts) enables us to obtain accuracy comparable to the immediate lookback

approach. This suggests that having some additional information regarding background traffic

patterns can lessen the dependence on accurate anomaly timing and lookback information.

6.4 Attacks with incubation

Attacks can evade the causality determination process by delaying the onset of anomalous behavior

after the infection. In other words, once a host is infected, it can delay scanning activity for an

incubation period. Thus the timing information derived from the host-based anomaly detection

will cease to be a good estimate of the infection time, since it can only guide us to the start of the

anomalous scanning activity. To observe how such an incubation strategy can defeat the causality

determination step, we use a random-scanning worm (scan-rate to be 30 times the mean normal

10The top 5 ports were 137 (NetBIOS), 7000 (AFS), 445 (Windows RPC), 53 (DNS), 7003 (AFS)

20

0 100 200 300 400 500 600 700
0

0.2

0.4

0.6

0.8

1

Lookback interval

F
al

se
 n

eg
at

iv
e

ra
te

INCUBATION = 10s
INCUBATION = 50s
INCUBATION = 100s
INCUBATION = 200s
INCUBATION = 500s

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Incubation Period of Attack

F
al

se
 n

eg
at

iv
e

ra
te

Without whitelist
Whitelisting ports
Whitelisting sources
Whitelisting ports and sources
With incubation inference

(a) Accuracy vs. lookback (b) Infinite lookback

Figure 17: Accuracy of causality estimation for attacks with incubation strategy

traffic rate), and vary the incubation period. In our attack we assume that all infected hosts have the

same incubation period. Figure 17 (a) confirms the intuition that knowledge of an ideal lookback

parameter is indeed important to guarantee good causal detection accuracy. In each case, we also

confirmed that the inferred incubation parameter (Section 5.3) is slightly larger than the optimal

lookback value.

Interestingly, we find that for the attack with an incubation period of 500 seconds the perfor-

mance is poor independent of the value of the lookback parameter. Investigating this particular

case, we found that the anomaly detection did not flag many of the infected hosts. It turned out

that the attack ended (our attack runs for a fixed duration of 2000 seconds) before many of the

infected nodes began their scanning activity. Due to the relatively long incubation period, most

of the nodes were infected relatively close to the end of the attack. Since these nodes also had a

large incubation period, the onset of their scanning activity never actually occurred. In this case,

anomaly detection was futile – there was no visible anomalous behavior for many of the infected

hosts, and the ability to identify causal flows is weakened.

Since the infinite lookback strategy does not depend on accurate timing information, it can be

potentially used for worms with incubation strategies without requiring the additional lookback

inference step. We also found earlier (Figure 16) that the performance of the infinite lookback

approach is dramatically boosted with the introduction of additional whitelist information. Build-

ing on the promise of this result, we evaluate the effect of using an infinite lookback approach for

attacks with incubation strategies in Figure 17 (b). We compare the performance of this approach

(infinite lookback enhanced with whitelist information) against the immediate lookback approach

(using the incubation period inference). The performance difference between the two approaches

is not significant. This result suggests that we can potentially remove the dependence on infer-

ring an optimal lookback parameter, and thus be robust to possible attack evasion strategies (e.g.,

attacks can vary the incubation period across hosts to defeat the inference).

21

7 Feasibility Study

We have implemented a prototype of the causality inference system based on the design outlined

in Section 5. Our system uses a MySQL database to implement the traffic archive (refer Figure 1)

where traffic records are indexed by the flow end-time and the destination host of the flow. The

system also maintains a MySQL database of host-level anomalies, indexed by the anomalous host

IP and the timestamp of the anomaly. The prototype implements the immediate lookback option.

Incubation parameter inference (Section 5.3) and iterative feature extraction (Section 5.4.2) are

implemented as off-line processing capabilities.

We evaluated our prototype by emulating real-time traffic feeds collected over a 25-day dataset

collected in Feb 2005 in the university network with over 16000 active hosts. The primary goal

of this study is to confirm the practical viability of implementing and operating a system for un-

covering causal attack flows based on our hypothesis. The detection, database, and correlation

operations all run on a single dual Intel Xeon 2.8 machine, with 2 GB of RAM. The traffic records

and the databases are stored on an external USB hard-drive. The memory requirements of our sys-

tem are small, rarely exceeding 30 MB of RAM usage. We implemented two minor optimizations

to minimize the database overhead. If there was a recent alarm on a host (i.e., within the last hour)

and we have already performed the correlation step we avoid replicating the effort for the current

alarm. To avoid insertions and retrievals to and from large databases, we create one database per

hour of traffic to reduce the flow insertion and query time. Even without significant code optimiza-

tions, we find that we get 8X speed up (on average) over real-time traffic rates (it takes around 3

days to process the 25-day trace).

Processing overheads

Total number of flows 616 million

Total time to process ≈ 76hrs
Avg. time to process one hour traffic 7.6 min

Max. time to process one hour traffic 14 min

Avg. host-based anomalies per hour ≈ 2600

Avg. queries to correlation engine per hour 45

Avg. incoming flows returned per lookup 116

Max. incoming flows returned per lookup 3795

Analyzing suspicious flows returned

Number of suspicious flows identified 23663

Contribution of top-10 sources 72%

Contribution of top-10 destination ports 66%

Table 1: Results from a preliminary measurement study using our prototype using a 25-day trace

We present some measurements from the 25-day study in Table 1. On average, we find that

it takes roughly 7.6 minutes to process a one hour traffic snapshot. However, at peak traffic rates

it takes up to 14 minutes to process an hour’s data. Even at peak load, the performance of our

prototype is sufficient to keep up with observed traffic rates in a large university setting, which is

22

comparable to large enterprise networks. The number of insertions from the anomaly detection

system appears to be quite large relative to the total traffic volume. This is an artifact of the nature

of the multi-resolution detection system. The detector reports an alarm for each constituent time

resolution over sliding windows. Thus, it is often the case that the same host was reported as being

anomalous on multiple resolutions at the same time. Also, a single conceptual anomaly (e.g. a host

being anomalous over a 10 minute period) may appear as multiple anomalies during the interval

of the anomaly (i.e., for each 10 second window within that 10 minute interval there will be an

anomaly reported). The actual number of queries that were sent to the correlation step are much

less than the number of raw anomalies reported, since we only need to process the first anomaly

for that host within that anomalous interval. One surprising statistic is the maximum and average

number of incoming flows returned for each such host-based anomaly. It turns out the majority

of hosts flagged as anomalies were in fact server-type hosts as opposed to client-like hosts, and

thus the number of incoming flows is orders of magnitude larger than those observed for normal

client-like hosts (Section 4.1).

Over the 25 day period there were around 23000 suspicious (i.e., potentially causal) flows

reported, which represents roughly 0.004% of the total number of flows. Analyzing these flows

reveals that there are a small number of sources and application services that are dominant. For

example, we notice that the top-10 application destination ports contribute roughly 66% of the

reported flows. These included flows on ports 904 and 907 (unknown, 26%), 123 (NTP, 13%),

137-138 (NetBIOS, 9%), 135 and 445 (Windows RPC service known to be associated with scan

traffic, 8%), and 7000-7001 (AFS, 7%). We observed that almost all the suspicious flows on ports

904 and 907 were from just three hosts in the network. These hosts appear to have been performing

a linear scan of the address space during this period. Similarly, the top-10 sources alone contribute

around 72% of the suspicious flows. These sources included four scanners (three scanning ports

904 and 907, one scanning ports 445 and 135), three NTP servers, two DNS servers, and one

NETBIOS server. In addition to serving to confirm the operational feasibility of our approach,

our study also provides some insights into the nature of events that may be identified when such a

system is deployed.

8 Conclusions

We explored the hypothesis that combining host-based anomaly detection and flow-level corre-

lation is a promising approach for determining attack causality. This hypothesis is based on the

insight that inter-host communication patterns are sparse. Our approach relies only on coarse-

grained network-level monitoring, without relying on prior knowledge of attack-specific properties

and signatures. It is thus robust across a wide spectrum of worm attacks. We examined different as-

pects of the design space such as the different lookback strategies, the use of whitelists, automatic

attack-feature extraction, and incubation inference. Our analytical study, trace-driven evaluations,

and prototype implementation show that our approach provides the basis of a practical scheme for

determining attack causality.

We conclude by pointing out limitations of our approach and summarizing some lessons from

our evaluations.

23

Limitations: Attacks can obfuscate the notion of causality, by either employing a coordinated

infection attempt (i.e., a host is infected by a combination of multiple incoming traffic flows), or

by piggybacking malicious traffic on legitimate connections (e.g., malicious objects embedded in

application data). Our approach does not address these attacks, but such attacks are also more

difficult to implement and less potent in practice. Attackers can also introduce background traf-

fic activity unrelated to the actual attack to mislead the correlation step, or alternatively launch

multiple worms at the same time to achieve the same result. To deal with stealthy attacks, we in-

troduced the incubation inference procedure. This process has limitations, especially when attacks

are non-homogeneous (i.e., the scan-rate and incubation period vary across infected nodes). While

our understanding of the limitations and attack-evasion strategies is not comprehensive, addressing

these concerns provide interesting avenues for future work.

Lessons: First, the accuracy of host-based anomaly detection systems along the time-dimension

i.e., providing an estimated infection time is an interesting component that has not been studied

extensively in the literature. Second, while it is evident that having an understanding of attack

parameters is useful, we demonstrate that automatically inferring information such as the port and

incubation parameter without relying on prior knowledge of attack-specific information is feasi-

ble, and this inference can improve the accuracy. Third, understanding server and background

scanning patterns within the network can significantly improve the accuracy by eliminating known

non-causal events. Finally, we find that such whitelist information can reduce the dependence on

accurate timing information and incubation inference. Specifically, we find that an infinite look-

back approach when enhanced with the whitelist information can provide comparable accuracy

to the immediate lookback approach (with an optimal lookback window). This suggests that in-

complete information along one of the dimensions (timing, attack features, or background traffic

knowledge) can be compensated by information along other dimensions.

References

[1] S. Staniford-Chen and S. Cheung and R. Crawford and M. Dilger and J. Frank and J.

Hoagland and K. Levitt and C. Wee and R. Yip and D. Zerkle. Grids a graph-based in-

trusion detection system for large networks. In 19th National Information Systems Security

Conference, 1996.

[2] Argus. http://www.qosient.com/argus.

[3] Z. Chen, L. Gao, and K. Kwiat. Modeling the Spread of Active Worms. In Proc. of IEEE

INFOCOM, 2003.

[4] Daniel R. Ellis, John G. Aiken, Adam M. McLeod, David R. Keppler, and Paul G. Am-

man. Graph-based Worm Detection On Operational Enterprise Networks . Technical report,

MITRE Corporation, April 2006.

[5] Jayanth K. Kannan, Jaeyeon Jung, Vern Paxson, and Can Emre Koksal. Detecting hidden

causality in network connections. Technical Report UCB/EECS-2005-30, EECS Department,

University of California, Berkeley, 2005.

24

[6] H. Kim and B. Karp. Autograph: Toward Automated, Distributed Worm Signature Detection.

In Proc. of USENIX Security Symposium, 2004.

[7] S. T. King, Z. M. Mao, D. G. Lucchetti, and P. M. Chen. Enriching Intrusion Alerts Through

Multi-Host Causality . In Proc. of NDSS, 2005.

[8] A. Kumar, V. Paxson, and N. Weaver. Exploiting Underlying Structure for Detailed Recon-

struction of an Internet-scale Event. In Proc. of IMC, 2005.

[9] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System . Communi-

cations of the ACM, 21:558–565, July 1978.

[10] P. McDaniel, S. Sen, O. Spatscheck, J. van der Merwe, W. Aiello, and C. Kalmanek. Enter-

prise Security: A Community of Interest Based Approach. In Proc. of NDSS, 2006.

[11] John McHugh and Carrie Gates. Locality: A New Paradigm for Thinking About Normal

Behavior and Outsider Threat. In Proc. of the Workshop on New Security Paradigms, 2003.

[12] J. Newsome and D. Song. Dynamic Taint Analysis for Automatic Detection, Analysis, and

Signature Generation of Exploits on Commodity Software. In Proc. of NDSS, 2005.

[13] Ruoming Pang, Mark Allman, Mike Bennett, Jason Lee, Vern Paxson, and Brian Tierney. A

First Look at Modern Enterprise Traffic . In Proc. of IMC, 2005.

[14] M. A. Rajab, F. Monrose, and A. Terzis. Worm Evolution Tracking via Timing Analysis. In

Proc. of ACM CCS WORM, 2005.

[15] M. Roesch. Snort - Lightweight Intrusion Detection for Networks. In Proc. of USENIX LISA,

1999.

[16] Stuart E. Schechter, Jaeyeon Jung, and Arthur W. Berger. Fast Detection of Scanning Worm

Infections. In Proc. of RAID, 2004.

[17] Vyas Sekar, Yinglian Xie, Michael K. Reiter, and Hui Zhang. A Multi-resolution Approach

for Worm Detection and Containment. In Proc. of IEEE/IFIP DSN, 2006.

[18] S. Staniford, V. Paxson, and N. Weaver. How to 0wn the Internet in Your Spare Time. In

Proc. of USENIX Security Symposium, 2002.

[19] S. Staniford-Chen and L. T. Heberlein. Holding Intruders Accountable on the Internet. In

Proc. of the IEEE Symposium on Security and Privacy, 1995.

[20] T. Toth and C. Kruegel. Connection-history based anomaly detection. In Proc. of the IEEE

Workshop on Information Assurance and Security, 2002.

[21] X. Wang, Z. Li, J. Xu, M. K. Reiter, C. Kil, and J. Y. Choi. Packet vaccine: Black-box exploit

detection and signature generation. In Proc. of ACM CCS, 2006.

25

[22] D. Whyte, E. Kranakis, and P. C. van Oorschot. DNS-based Detection of Scanning Worms

in an Enterprise Network . In Proc. of NDSS, 2005.

[23] Matthew M. Williamson. Design, Implementation and Test of an Email Virus Throttle. In

Proc. of ACSAC, 2003.

[24] J. Wu, S. Vangala, L. Gao, and K. Kwiat. An Effective Architecture and Algorithm for

Detecting Worms with Various Scan Techniques. In Proc. of NDSS, 2004.

[25] Y. Xie, V. Sekar, D. A. Maltz, M. K. Reiter, and H. Zhang. Worm Origin Identification Using

Random Moonwalks. In Proc. of IEEE Symposium on Security and Privacy, 2005.

[26] Vinod Yegneswaran, Paul Barford, and Johannes Ullrich. Internet Intrusions: Global Char-

acteristics and Prevalence. In Proc. of ACM SIGMETRICS, 2003.

[27] Y. Zhang and V. Paxson. Detecting Stepping Stones. In Proc. of USENIX Security Sympo-

sium, 2001.

26

